Угловая мера по оси косинуса и синуса. Прямоугольный треугольник: синус, косинус, тангенс, котангенс угла

Содержание
  1. Геометрия. Урок 1. Тригонометрия
  2. Тригонометрия в прямоугольном треугольнике
  3. Тригонометрия: Тригонометрический круг
  4. Основное тригонометрическое тождество
  5. Тригонометрия: Таблица значений тригонометрических функций
  6. Тригонометрия: градусы и радианы
  7. Тригонометрия: Формулы приведения
  8. Тригонометрия: Теорема синусов
  9. Тригонометрия: Расширенная теорема синусов
  10. Тригонометрия: Теорема косинусов
  11. Примеры решений заданий из ОГЭ
  12. Синус, косинус, тангенс и котангенс в тригонометрии: определения, формулы, примеры, угол поворота
  13. Синус, косинус, тангенс и котангенс. Определения
  14. Угол поворота
  15. Числа
  16. Тригонометрические функции углового и числового аргумента
  17. Связь определений sin, cos, tg и ctg из геометрии и тригонометрии
  18. Синус, косинус, тангенс и котангенс: основные формулы
  19. Тригонометрия: синус, косинус, тангенс, котангенс
  20. Основные величины тригонометрии
  21. Тригонометрический круг
  22. Свойства тригонометрических функций: синус и косинус
  23. Свойства тангенсоиды и котангенсоиды
  24. Значения синуса, косинуса и тангенса некоторых углов. Полные уроки — Гипермаркет знаний
  25. Тема урока
  26. Цели урока
  27. Задачи урока
  28. План урока
  29. Вступительное слово
  30. Угловая мера
  31. Углы на тригонометрической окружности
  32. Определения синуса, косинуса и тангенса
  33. Синус (sin)
  34. Косинус (cos)
  35. Тангенс (tg)
  36. Котангенс (ctg)
  37. Историческая справка
  38. Пример
  39. Выражение тригонометрических функций через одну из них того же аргумента.
  40. Интересный факт
  41. Вопросы
  42. Список использованных источников

Геометрия. Урок 1. Тригонометрия

Угловая мера по оси косинуса и синуса. Прямоугольный треугольник: синус, косинус, тангенс, котангенс угла

Смотрите бесплатные видео-уроки по теме “Тригонометрия” на канале Ёжику Понятно.

-уроки на канале Ёжику Понятно.

страницы:

Тригонометрия в прямоугольном треугольнике

Рассмотрим прямоугольный треугольник. Для каждого из острых углов найдем прилежащий к нему катет и противолежащий.

Синус угла – отношение противолежащего катета к гипотенузе.

sin α = Противолежащий катет гипотенуза

Косинус угла – отношение прилежащего катета к гипотенузе.

cos α = Прилежащий катет гипотенуза

Тангенс угла – отношение противолежащего катета к прилежащему (или отношение синуса к косинусу).

tg α = Противолежащий катет Прилежащий катет

Котангенс угла – отношение прилежащего катета к противолежащему (или отношение косинуса к синусу).

ctg α = Прилежащий катет Противолежащий катет

Рассмотрим прямоугольный треугольник ABC, угол C равен 90°:

sin ∠ A = C B A B

cos ∠ A = A C A B

tg ∠ A = sin ∠ A cos ∠ A = C B A C

ctg ∠ A = cos ∠ A sin ∠ A = A C C B

sin ∠ B = A C A B

cos ∠ B = B C A B

tg ∠ B = sin ∠ B cos ∠ B = A C C B

ctg ∠ B = cos ∠ B sin ∠ B = C B A C

Тригонометрия: Тригонометрический круг

Тригонометрия на окружности – это довольно интересная абстракция в математике. Если понять основной концепт так называемого “тригонометрического круга”, то вся тригонометрия будет вам подвластна. В описании к видео есть динамическая модель тригонометрического круга.

Тригонометрический круг – это окружность единичного радиуса с центром в начале координат. 

Такая окружность пересекает ось х в точках ( − 1 ; 0 ) и ( 1 ; 0 ) , ось y в точках ( 0 ; − 1 ) и ( 0 ; 1 )

На данной окружности будет три шкалы отсчета – ось x, ось y и сама окружность, на которой мы будем откладывать углы.

Углы на тригонометрической окружности откладываются от точки с координатами ( 1 ; 0 ) , – то есть от положительного направления оси x, против часовой стрелки. Пусть эта точка будет называться S (от слова start). Отметим на окружности точку A. Рассмотрим ∠ S O A , обозначим его за α . Это центральный угол, его градусная мера равна дуге, на которую он опирается, то есть ∠ S O A = α = ∪ S A .

Давайте найдем синус и косинус этого угла. До этого синус и косинус мы искали в прямоугольном треугольнике, сейчас будем делать то же самое. Для этого опустим перпендикуляры из точки A на ось x (точка B) и на ось игрек (точка C).

Отрезок OB является проекцией отрезка OA на ось x, отрезок OC является проекцией отрезка OA на ось y.

Рассмотрим прямоугольный треугольник AOB:

cos α = O B O A = O B 1 = O B

sin α = A B O A = A B 1 = A B

Поскольку O C A B – прямоугольник, A B = C O .

Итак, косинус угла – координата точки A по оси x (ось абсцисс), синус угла – координата точки A по оси y (ось ординат).

Давайте рассмотрим еще один случай, когда угол α – тупой, то есть больше 90 ° :

Опускаем из точки A перпендикуляры к осям x и y. Точка B в этом случае будет иметь отрицательную координату по оси x. Косинус тупого угла отрицательный.

Можно дальше крутить точку A по окружности, расположить ее в III или даже в IV четверти, но мы пока не будем этим заниматься, поскольку в курсе 9 класса рассматриваются углы от 0 ° до 180 ° . Поэтому мы будем использовать только ту часть окружности, которая лежит над осью x.

  (Если вас интересует тригонометрия на полной окружности, смотрите видео на канале). Отметим на этой окружности углы 0 ° , 30 ° , 45 ° , 60 ° , 90 ° , 120 ° , 135 ° , 150 ° , 180 ° . Из каждой точки на окружности, соответствующей углу, опустим перпендикуляры на ось x и на ось y.

Координата по оси x – косинус угла, координата по оси y – синус угла.

Пример:

cos 150 ° = − 3 2

sin 150 ° = 1 2

Ещё одно замечание.

Синус тупого угла – положительная величина, а косинус – отрицательная.

Тангенс – это отношение синуса к косинусу. При делении положительной величины на отрицательную результат отрицательный. Тангенс тупого угла отрицательный.

Котангенс – отношение косинуса к синусу. При делении отрицательной величины на положительную результат отрицательный. Котангенс тупого угла отрицательный.

Основное тригонометрическое тождество

sin 2 α + cos 2 α = 1

Данное тождество – теорема Пифагора в прямоугольном треугольнике O A B :

A B 2 + O B 2 = O A 2

sin 2 α + cos 2 α = R 2

sin 2 α + cos 2 α = 1

Тригонометрия: Таблица значений тригонометрических функций

30° 45° 60° 90°
sinα 0 12 22 32 1
cosα 1 32 22 12 0
tgα 0 33 1 3 нет
ctgα нет 3 1 33 0

Тригонометрия: градусы и радианы

Как перевести градусы в радианы, а радианы в градусы? Как и когда возникла градусная мера угла? Что такое радианы и радианная мера угла? Ищите ответы в этом видео!

Тригонометрия: Формулы приведения

Тригонометрия на окружности имеет некоторые закономерности. Если внимательно рассмотреть данный рисунок,

можно заметить, что:

sin 180 ° = sin ( 180 ° − 0 ° ) = sin 0 °

sin 150 ° = sin ( 180 ° − 30 ° ) = sin 30 °

sin 135 ° = sin ( 180 ° − 45 ° ) = sin 45 °

sin 120 ° = sin ( 180 ° − 60 ° ) = sin 60 °

cos 180 ° = cos ( 180 ° − 0 ° ) = − cos 0 °

cos 150 ° = cos ( 180 ° − 30 ° ) = − cos 30 °

cos 135 ° = cos ( 180 ° − 45 ° ) = − cos 45 °

cos 120 ° = cos ( 180 ° − 60 ° ) = − cos 60 °

Рассмотрим тупой угол β:

Для произвольного тупого угла β = 180 ° − α всегда будут справедливы следующие равенства:

sin ( 180 ° − α ) = sin α

cos ( 180 ° − α ) = − cos α

tg ( 180 ° − α ) = − tg α

ctg ( 180 ° − α ) = − ctg α

Тригонометрия: Теорема синусов

В произвольном треугольнике стороны пропорциональны синусам противолежащих углов.

a sin ∠ A = b sin ∠ B = c sin ∠ C

Тригонометрия: Расширенная теорема синусов

Отношение стороны к синусу противолежащего угла равно двум радиусам описанной вокруг данного треугольника окружности.

a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R

Тригонометрия: Теорема косинусов

Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.

a 2 = b 2 + c 2 − 2 b c ⋅ cos ∠ A

b 2 = a 2 + c 2 − 2 a c ⋅ cos ∠ B

c 2 = a 2 + b 2 − 2 a b ⋅ cos ∠ C

Примеры решений заданий из ОГЭ

Модуль геометрия: задания, связанные с тригонометрией.

Скачать домашнее задание к уроку 1.

Источник: https://epmat.ru/modul-geometriya/urok-1-trigonometriya/

Синус, косинус, тангенс и котангенс в тригонометрии: определения, формулы, примеры, угол поворота

Угловая мера по оси косинуса и синуса. Прямоугольный треугольник: синус, косинус, тангенс, котангенс угла

Тригонометрия – раздел математической науки, в котором изучаются тригонометрические функции и их использование в геометрии. Развитие тригонометрии началось еще во времена античной Греции. Во времена средневековья важный вклад в развитие этой науки внесли ученые Ближнего Востока и Индии. 

Данная статья посвящена базовым понятиям и дефинициям тригонометрии. В ней рассмотрены определения основных тригонометрических функций: синуса, косинуса, тангенса и котангенса. Разъяснен и проиллюстрирован их смысл в контексте геометрии. 

Синус, косинус, тангенс и котангенс. Определения

Изначально определения тригонометрических функций, аргументом которых является угол, выражались через соотношения сторон прямоугольного треугольника.

Определения тригонометрических функций

Синус угла (sin α) – отношение противолежащего этому углу катета к гипотенузе.

Косинус угла (cosα) – отношение прилежащего катета к гипотенузе.

Тангенс угла (tg α) – отношение противолежащего катета к прилежащему.

Котангенс угла (ctg α) – отношение прилежащего катета к противолежащему.

Данные определения даны для острого угла прямоугольного треугольника!

Приведем иллюстрацию. 

В треугольнике ABC с прямым углом С синус угла А равен отношению катета BC к гипотенузе AB.

Определения синуса, косинуса, тангенса и котангенса позволяют вычислять значения этих функций по известным длинам сторон треугольника.

Важно помнить!

Область значений синуса и косинуса: от -1 до 1. Иными словами синус и косинус принимают значения от -1 до 1. Область значений тангенса и котангенса – вся числовая прямая, то есть эти функции могут принимать любые значения.

Угол поворота

Определения, данные выше, относятся к острым углам. В тригонометрии вводится понятие угла поворота, величина которого, в отличие от острого угла, не ограничена рамками от 0 до 90 градусов.Угол поворота в градусах или радианах выражается любым действительным числом от -∞ до +∞. 

В данном контексте можно дать определение синуса, косинуса, тангенса и котангенса угла произвольной величины. Представим единичную окружность с центром в начале декартовой системы координат.

Начальная точка A с координатами (1, 0) поворачивается вокруг центра единичной окружности на некоторый угол α и переходит в точку A1. Определение дается через координаты точки A1(x , y). 

Синус (sin) угла поворота

Синус угла поворота α – это ордината точки A1(x , y). sin α=y

Косинус (cos) угла поворота

Косинус угла поворота α – это абсцисса точки A1(x , y). cos α=х

Тангенс (tg) угла поворота

Тангенс угла поворота α – это отношение ординаты точки A1(x , y) к ее абсциссе. tg α=yx

Котангенс (ctg) угла поворота

Котангенс угла поворота α – это отношение абсциссы точки A1(x , y) к ее ординате. ctg α=xy

Синус и косинус определены для любого угла поворота. Это логично, ведь абсциссу и ординату точки после поворота можно определить при любом угле. Иначе обстоит дело с тангенсом и котангенсом.

Тангенс не определен, когда точка после поворота переходит в точку с нулевой абсциссой (0, 1) и (0, -1). В таких случаях выражение для тангенса tg α=yx просто не имеет смысла, так как в нем присутствует деление на ноль. Аналогично ситуация с котангенсом.

 Отличием состоит в том, что котангенс не определен в тех случаях, когда в ноль обращается ордината точки.

Важно помнить!

Синус и косинус определены для любых углов α.

Тангенс определен для всех углов, кроме α=90°+180°·k, k∈Z (α=π2+π·k, k∈Z)

Котангенс определен для всех углов, кроме α=180°·k, k∈Z (α=π·k, k∈Z)

При решении практических примеров не говорят “синус угла поворота α”. Слова “угол поворота” просто опускают, подразумевая, что из контекста и так понятно, о чем идет речь. 

Опиши задание

Числа

Как быть с определением синуса, косинуса, тангенса и котангенса числа, а не угла поворота?

Синус, косинус, тангенс, котангенс числа

Синусом, косинусом, тангенсом и котангенсом числа t называется число, которое соответственно равно синусу, косинусу, тангенсу и котангенсу в радиан.

Например, синус числа 10π равен синусу угла поворота величиной 10π рад.

Существует и другой подход к определению синуса, косинуса, тангенса и котангенса числа. Рассмотрим его подробнее.

Любому действительному числу t ставится в соответствие точка на единичной окружности с центром в начале прямоугольной декартовой системы координат. Синус, косинус, тангенс и котангенс определяются через координаты этой точки.

Начальная точка на окружности – точка A c координатами (1, 0).

Положительному числу t соответствует точка, в которую перейдет начальная точка, если будет двигаться по окружности против часовой стрелки и пройдет путь t.

Отрицательному числу t соответствует точка, в которую перейдет начальная точка, если будет двигаться по окружности против часовой стрелки и пройдет путь t.

Теперь, когда связь числа и точки на окружности установлена, переходим к определению синуса, косинуса, тангенса и котангенса.

Синус (sin) числа t

Синус числа t – ордината точки единичной окружности, соответствующей числу t. sin t=y

Косинус (cos) числа t

Косинус числа t – абсцисса точки единичной окружности, соответствующей числу t. cos t=x

Тангенс (tg) числа t

Тангенс числа t – отношение ординаты к абсциссе точки единичной окружности, соответствующей числу t. tg t=yx=sin tcos t

Последние определения находятся в соответствии и не противоречат определению, данному в начале это пункта. Точка на окружности, соответствующая числу t, совпадает с точкой, в которую переходит начальная точка после поворота на угол радиан.

Тригонометрические функции углового и числового аргумента

Каждому значению угла α соответствует определенное значение синуса и косинуса этого угла. Также, как всем углам α, отличным от α = 90 ° + 180 ° · k ,   k ∈ Z   ( α = π 2 + π · k ,   k ∈ Z ) соответствует определенное значение тангенса. Котангенс, как сказано выше, определен для всех α, кроме α = 180 ° · k ,   k ∈ Z   ( α = π · k ,   k ∈ Z ). 

Можно сказать, что sin α, cos α, tg α, ctg α – это функции угла альфа, или функции углового аргумента. 

Аналогично можно говорить о синусе, косинусе, тангенсе и котангенсе, как о функциях числового аргумента. Каждому действительному числу соответствует определенное значение синуса или косинуса числа t. Всем числам, отличным от π 2 + π · k ,   k ∈ Z соответствует значение тангенса. Котангенс, аналогично, определен для всех чисел, кроме π · k ,   k ∈ Z.

Основные функции тригонометрии

Синус, косинус, тангенс и котангенс – основные тригонометрические функции.

Из контекста обычно понятно, с каким аргументом тригонометрической функции (угловой аргумент или числовой аргумент) мы имеем дело. 

Связь определений sin, cos, tg и ctg из геометрии и тригонометрии

Вернемся к данным в самом начале определениям и углу альфа, лежащему в пределах от 0 до 90 градусов. Тригонометрические определения синуса, косинуса, тангенса и котангенса полностью согласуются с геометрическими определениями, данными с помощью  соотношений сторон прямоугольного треугольника. Покажем это.

Возьмем единичную окружность с центром в прямоугольной декартовой системе координат. Повернем начальную точку A(1,0) на угол величиной до 90 градусов и проведем из полученной точки A1(x,y) перпендикуляр к оси абсцисс.

В полученном прямоугольном треугольнике угол A1OH равен углу поворота α, длина катета OH равна абсциссе точки A1(x,y).

Длина катета, противолежащего углу, равна ординате точки A1(x,y), а длина гипотенузы равна единице, так как она является радиусом единичной окружности. 

В соответствии с определением из геометрии, синус угла α равен отношению противолежащего катета к гипотенузе. 

sin α=A1HOA1=y1=y

Значит, определение синуса острого угла в прямоугольном треугольнике через соотношение сторон эквивалентно определению синуса угла поворота α, при альфа лежащем в пределах от 0 до 90 градусов.

Аналогично соответствие определений можно показать для косинуса, тангенса и котангенса.

Синус, косинус, тангенс и котангенс: основные формулы

Источник: https://Zaochnik.com/spravochnik/matematika/trigonometrija/sinus-kosinus-tangens-i-kotangens/

Тригонометрия: синус, косинус, тангенс, котангенс

Угловая мера по оси косинуса и синуса. Прямоугольный треугольник: синус, косинус, тангенс, котангенс угла

Тригонометрия, как наука, зародилась на Древнем Востоке. Первые тригонометрические соотношения были выведены астрономами для создания точного календаря и ориентированию по звездам. Данные вычисления относились к сферической тригонометрии, в то время как в школьном курсе изучают соотношения сторон и угла плоского треугольника.

Тригонометрия – это раздел математики, занимающийся свойствами тригонометрических функций и зависимостью между сторонами и углами треугольников.

В период расцвета культуры и науки I тысячелетия нашей эры знания распространились с Древнего Востока в Грецию. Но основные открытия тригонометрии – это заслуга мужей арабского халифата.

В частности, туркменский ученый аль-Маразви ввел такие функции, как тангенс и котангенс, составил первые таблицы значений для синусов, тангенсов и котангенсов. Понятие синуса и косинуса введены индийскими учеными.

Тригонометрии посвящено немало внимания в трудах таких великих деятелей древности, как Евклида, Архимеда и Эратосфена.

Основные величины тригонометрии

Основные тригонометрические функции числового аргумента – это синус, косинус, тангенс и котангенс. Каждая из них имеет свой график: синусоида, косинусоида, тангенсоида и котангенсоида.

В основе формул для расчета значений указанных величин лежит теорема Пифагора. Школьникам она больше известна в формулировке: «Пифагоровы штаны, во все стороны равны», так как доказательство приводится на примере равнобедренного прямоугольного треугольника.

Синус, косинус и другие зависимости устанавливают связь между острыми углами и сторонами любого прямоугольного треугольника. Приведем формулы для расчета этих величин для угла A и проследим взаимосвязи тригонометрических функций:

Как видно, tg и ctg являются обратными функциями. Если представить катет a как произведение sin A и гипотенузы с, а катет b в виде cos A * c, то получим следующие формулы для тангенса и котангенса:

Тригонометрический круг

Графически соотношение упомянутых величин можно представить следующим образом:

Окружность, в данном случае, представляет собой все возможные значения угла α — от 0° до 360°. Как видно из рисунка, каждая функция принимает отрицательное или положительное значение в зависимости от величины угла.

Например, sin α будет со знаком «+», если α принадлежит I и II четверти окружности, то есть, находится в промежутке от 0° до 180°. При α от 180° до 360° (III и IV четверти) sin α может быть только отрицательным значением.

Попробуем построить тригонометрические таблицы для конкретных углов и узнать значение величин.

Значения α равные 30°, 45°, 60°, 90°, 180° и так далее – называют частными случаями. Значения тригонометрических функций для них просчитаны и представлены в виде специальных таблиц.

Данные углы выбраны отнюдь не случайно. Обозначение π  в таблицах стоит для радиан. Рад  — это угол, при котором длина дуги окружности соответствует ее радиусу. Данная величина была введена для того, чтобы установить универсальную зависимость, при расчетах в радианах не имеет значение действительная длина радиуса в см.

Углы в таблицах для тригонометрических функций соответствуют значениям радиан:

Итак, не трудно догадаться, что 2π – это полная окружность или 360°.

Свойства тригонометрических функций: синус и косинус

Для того, чтобы рассмотреть и сравнить основные свойства синуса и косинуса, тангенса и котангенса, необходимо начертить их функции. Сделать это можно в виде кривой, расположенной в двумерной системе координат.

Рассмотри сравнительную таблицу свойств для синусоиды и косинусоиды:

СинусоидаКосинусоида
y = sin xy = cos x
ОДЗ [-1; 1]ОДЗ [-1; 1]
sin x = 0, при x = πk, где k ϵ Zcos x = 0, при x = π/2 + πk, где k ϵ Z
sin x = 1, при x = π/2 + 2πk, где k ϵ Zcos x = 1, при x = 2πk, где k ϵ Z
sin x = – 1, при x = 3π/2 + 2πk, где k ϵ Zcos x = – 1, при x = π + 2πk, где k ϵ Z
sin (-x) = – sin x, т. е. функция нечетнаяcos (-x) = cos x, т. е. функция четная
функция периодическая, наименьший период – 2πфункция периодическая, наименьший период – 2π
sin x › 0, при x принадлежащем I и II четвертям или от 0° до 180° (2πk, π + 2πk)cos x › 0, при x принадлежащем I и IV четвертям или от 270° до 90° (- π/2 + 2πk, π/2 + 2πk)
sin x ‹ 0, при x принадлежащем III и IV четвертям или от 180° до 360° (π + 2πk, 2π + 2πk)cos x ‹ 0, при x принадлежащем II и III четвертям или от 90° до 270° (π/2 + 2πk, 3π/2 + 2πk)
возрастает на промежутке [- π/2 + 2πk, π/2 + 2πk]возрастает на промежутке [-π + 2πk, 2πk]
убывает на промежутках [ π/2 + 2πk, 3π/2 + 2πk]убывает на промежутках [2πk, π + 2πk]
производная (sin x)’ = cos xпроизводная (cos x)’ = – sin x

Определить является ли функция четной или нет очень просто. Достаточно представить тригонометрический круг со знаками тригонометрических величин и мысленно «сложить» график относительно оси OX. Если знаки совпадают, функция четная, в противном случае — нечетная.

Введение радиан и перечисление основных свойств синусоиды и косинусоиды позволяют привести следующую закономерность:

Убедиться в верности формулы очень просто. Например, для x =  π/2 синус равен 1, как и косинус x = 0. Проверку можно осуществить обративших к таблицам или проследив кривые функций для заданных значений.

Свойства тангенсоиды и котангенсоиды

Графики функций тангенса и котангенса значительно отличаются от синусоиды и косинусоиды. Величины tg и ctg являются обратными друг другу.

Основные свойства котангенсоиды:

  1. Y = tg x.
  2. В отличие от функций синуса и косинуса, в тангенсоиде Y может принимать значения множества всех действительных чисел.
  3. Тангенсоида стремится к значениям y при x = π/2 + πk, но никогда не достигает их.
  4. Наименьший положительный период тангенсоиды равен π.
  5. Tg (- x) = — tg x, т. е. функция нечетная.
  6. Tg x = 0, при x = πk.
  7. Функция является возрастающей.
  8. Tg x › 0, при x ϵ (πk, π/2 + πk).
  9. Tg x ‹ 0, при x ϵ ( — π/2 + πk, πk).
  10. Производная (tg x)’ = 1/cos2⁡x .

Рассмотрим графическое изображение котангенсоиды ниже по тексту.

Основные свойства котангенсоиды:

  1. Y = ctg x.
  2. В отличие от функций синуса и косинуса, в тангенсоиде Y может принимать значения множества всех действительных чисел.
  3. Котангенсоида стремится к значениям y при x = πk, но никогда не достигает их.
  4. Наименьший положительный период котангенсоиды равен π.
  5. Ctg (- x) = — ctg x, т. е. функция нечетная.
  6. Ctg x = 0, при x = π/2 + πk.
  7. Функция является убывающей.
  8. Ctg x › 0, при x ϵ (πk, π/2 + πk).
  9. Ctg x ‹ 0, при x ϵ (π/2 + πk, πk).
  10. Производная (ctg x)’ = — 1/sin2⁡x Исправить

Источник: https://karate-ege.ru/matematika/trigonometriya-sinus-kosinus-tangens-kotangens.html

Значения синуса, косинуса и тангенса некоторых углов. Полные уроки — Гипермаркет знаний

Угловая мера по оси косинуса и синуса. Прямоугольный треугольник: синус, косинус, тангенс, котангенс угла

Гипермаркет знаний>>Математика>>Математика 8 класс. Полные уроки>>Геометрия: Значения синуса, косинуса и тангенса некоторых углов. Полные уроки

Тема урока

  • Значения синуса, косинуса и тангенса некоторых углов.

Цели урока

  • Вывести самостоятельно понятия синуса, косинуса, тангенса и котангенса острого угла.
  • Познакомиться с новыми определениями и вспомнить некоторые уже изученные.
  • Научиться применять свойства фигур при решении задач.
  • Научиться находить значения синусов и косинусов острых углов.

Задачи урока

  • Развивающие – развить внимание учащихся, усидчивость, настойчивость, логическое мышление, математическую речь.
  • Воспитательные – посредством урока воспитывать внимательное отношение друг к другу, прививать умение слушать товарищей, взаимовыручке, самостоятельность.

План урока

  1. Вступительное слово.
  2. Повторение ранее изученного материала.
  3. Определения синуса, косинуса и тангенса.
  4. Историческая справка.
  5. Значения синуса, косинуса и тангенса некоторых углов.

Вступительное слово

Традиционно в школе впервые знакомятся с синусом, косинусом и тангенсом острого угла в 8-м классе. Определения их вводятся через отношения в прямоугольном треугольнике.

Такое представление трудно воспринимается и запоминается восьмиклассниками, – отсутствует опора на зрительное восприятие данных объектов.

Мы решили пойти несколько иным путём: попытаться дать возможность «увидеть» синус и косинус, тангенс и котангенс угла.

Показать как выглядят эти функции на графике, дать новые темы для размышлений.

Угловая мера

Угол измеряют в градусной мере (градус, минута, секунда), в оборотах — отношение длины дуги s к длине окружности L, в радианах — отношение длины дуги s к радиусу r; исторически применялась также градовая мера измерения углов, в настоящее время она почти нигде не используется.

1 оборот = 2 радианам = 360° = 400 градам.

В системе СИ принято использовать радианы.

В морской терминологии углы обозначаются румбами.

Углы на тригонометрической окружности

В математике в качестве начала отсчёта углов принято направление оси абсцисс (то есть для наблюдателя, расположенного в начале координат, — относительно направления направо), и отсчитывается против часовой стрелки.

В географии в качестве начала отсчёта углов принято направление оси ординат (то есть для наблюдателя, расположенного в начале координат, — относительно направления север (вперёд)), и отсчитывается по часовой стрелке.

Определения синуса, косинуса и тангенса

Для того что бы мы могли разговаривать на “одном” языке – нужно посмотреть в сам корень и вспомнить что такое тригонометрия и тригонометрические функции.

Тригонометрия – это такое сложное греческое слово: тригонон – треугольник, метро – мерять. Стало быть по-гречески это означает: меряться треугольниками. Очень странное слово. Может быть древнегреки под треугольниками подразумевали кое-что другое? Не знаю.

Тригонометрические функции — вид элементарных функций, изучаемых в тригонометрии. Обычно к ним относят синус (sin x), косинус (cos x), тангенс (tg x), котангенс (ctg x), секанс (sec x) и косеканс (cosec x), последняя пара функций в настоящее время сравнительно малоупотребительна.

В западной литературе тангенс, котангенс и косеканс обозначаются tan x, cot x, csc x.

Обычно тригонометрические функции определяются геометрически, но можно определить их аналитически через суммы рядов или как решения некоторых дифференциальных уравнений, что позволяет расширить область определения этих функций на комплексные числа.

Графики тригонометрических функций: синуса, косинуса, тангенса, котангенса, секанса, косеканса

Синус (sin)

Синус – тригонометрическая величина означающая половину хорды двойной дуги или угла а также перпендикуляр, опущенный из конца дуги на радиус.

В прямоугольном треугольнике синус острого угла равен отношению катета, лежащего напротив этого угла (противолежащего катета), к гипотенузе.

Значения синусов для часто встречающихся углов:

  • sin (0°) = 0
  • sin (30°) = sin (π/6) = 1/2
  • sin (45°) = sin (π/4) = (√2)/2 = 1/√2
  • sin (60°) = sin (π/3) = (√3)/2
  • sin (90°) = sin (π/2) = 1
  • sin (180°) = sin (π) = 0
  • sin (270°) = sin (3π/2) = –1

Косинус (cos)

Косинус –  синус дополнительного угла, функция угла, выражаемая отношением прилегающего к углу катета к гипотенузе.

В прямоугольном треугольнике косинус острого угла равен отношению катета, выходящего из этого угла (прилежащего катета), к гипотенузе.

Значения косинусов для часто встречающихся углов:

  • сos (0°) = 1
  • сos (30°) = cos (π/6) = (√3)/2
  • сos (45°) = cos (π/4) = (√2)/2 = 1/√2
  • сos (60°) = cos (π/3) = 1/2
  • сos (90°) = cos (π/2) = 0
  • cos (180°) = cos (π) = –1
  • сos (270°) = cos (3π/2) = 0

Тангенс (tg)

Тангенс — одна из тригонометрических функций, обозначется tg (в англоязычной традиции — tan).

В прямоугольном треугольнике тангенс острого угла равен отношению противолежащего катета к прилежащему. Значение тангенса легко найти, зная синус и косинус угла:

tg(α) = sin(α)/cos(α).

Значения тангенсов для часто встречающихся углов:

  • tg (0°) = 0
  • tg (30°) = tg (π/6) = (√3)/3 = 1/√3
  • tg (45°) = tg (π/4) = 1
  • tg (60°) = tg (π/3) = √3
  • tg (90°) = tg (π/2) = +∞ (значение не определено, вблизи 90° тангенс стремится к бесконечности)
  • tg (180°) = tg (π) = 0
  • tg (270°) = tg (3π/2) = –∞ (значение не определено, вблизи 90° тангенс стремится к бесконечности)
  • tg (360°) = tg (2π) = 0

Котангенс (ctg)

Котангенс – одна из тригонометрических функций, обозначется ctg. Котангенсом угла в треугольнике называют отношение прилежащего катета, к противолежащему катету.

сtg(α) = cos(α)/sin(α).

Значения котангенсов для часто встречающихся углов:

  • ctg (0°) =  +∞ (значение не определено, вблизи 90° тангенс стремится к бесконечности)
  • ctg (30°) = tg (π/6) = (√3)/1 = √3
  • ctg (45°) = tg (π/4) = 1
  • ctg (60°) = tg (π/3) = 1/√3
  • ctg (90°) = tg (π/2) =0
  • ctg (180°) = tg (π) = –∞ (значение не определено, вблизи 90° тангенс стремится к бесконечности)

Историческая справка

В IV-V веках появился уже специальный термин в трудах по астрономии великого индийского учёного Ариабхаты, именем которого назван первый индийский спутник Земли. Дугу он назвал ардхаджива (ардха – половина, джива – тетива лука, которую напоминает хорда).

Позднее появилось более краткое название джива. Арабскими математиками в IX веке это слово было заменено на арабское слово джайб (выпуклость).

При переводе арабских математических текстов в веке оно было заменено латинским синус (sinus изгиб, кривизна).

Слово косинус намного моложе. Косинус – это сокращение латинского выражения completely sinus, т. е. “дополнительный синус” (или иначе “синус дополнительной дуги”; cosa = sin( 90° – a)).

Тангенсы возникли в связи с решением задачи об определении длины тени. Тангенс (а также котангенс) введен в X веке арабским математиком Абу-ль-Вафой, который составил и первые таблицы для нахождения тангенсов и котангенсов.

Однако эти открытия долгое время оставались неизвестными европейским ученым, и тангенсы были заново открыты лишь в XIV веке немецким математиком, астрономом Регимонтаном (1467 г.). Он доказал теорему тангенсов.

Региомонтан составил также подробные тригонометрические таблицы; благодаря его трудам плоская и сферическая тригонометрия стала самостоятельной дисциплиной и в Европе.

Название «тангенс», происходящее от латинского tanger (касаться), появилось в 1583 г. Tangens переводится как «касающийся» (линия тангенсов – касательная к единичной окружности).

Дальнейшее развитие тригонометрия получила в трудах выдающихся астрономов Николая Коперника (1473-1543) – творца гелиоцентрической системы мира, Тихо Браге (1546-1601) и Иогана Кеплера (1571-1630), а также в работах математика Франсуа Виета (1540-1603), который полностью решил задачу об определениях всех элементов плоского или сферического треугольника по трем данным.

Пример

Одним из самых простых примеров применения синуса и косинуса является прямоугольный треугольник. Рассмотрим прямоугольный равнобедренный треугольник с углом при основании, равным 45°. Пусть катеты его равны a.

Из за того что функция косинус опережает синус на 90 градусов возникло такое тождество.

На графике видно то что разница между функциями равно 90 градусов.

Выражение тригонометрических функций через одну из них того же аргумента.

(выбор знака перед корнем зависит от того, в какой четверти находится угол а)

Через sin(a):

Через cos(a):

Интересный факт

Тригонометрия в жизни.

Итак, предположим, что нам необходимо построить мост между берегом реки и островом, а для этого нужно знать расстояние до объекта. Измерить это расстояние непосредственным образом трудно, поскольку на нашем пути река, крутые берега и лес.

С точки зрения математики, перед нами стоит следующая задача: определить расстояние между точками А и В.

Для решения этой задачи, мы будем использовать изученные определения из тригонометрии. Почему? Потому, что именно в тригонометрии изучаются взаимосвязи между сторонами прямоугольного треугольника и его углами. Но у нас нет пока прямоугольного треугольника, поэтому, мы будем его достраивать.

Первое, что мы сделаем, это проведем прямую линию АМ так, чтобы образовался прямой угол МАВ. На этой прямой отмерим, например, 300 метров от точки А и поставим точку С. Теперь, мы имеем прямоугольный треугольник АВС.

Далее, нам нужно измерить угол АСВ. В этом случае для измерения углов используется специальный прибор, позволяющий измерять углы между двумя объектами на местности. Предположим, используя этот прибор, мы получили угол АСВ равный 48 градусам.

Итак, что мы имеем: мы имеем прямоугольный треугольник АВС; мы знаем расстояние АС, равное 300 метрам; знаем, что угол АСВ равен 48 градусам.

Мы выполнили все подготовительные действия и теперь можем переходить непосредственно к вычислениям.

Вспомним определение тангенса.

Тангенс острого угла равен отношению противолежавшего катета к прилежащему. Из этого определения нам известны угол АСВ и сторона АС. Осталось определить сторону АВ.

tg ACB = AB/AC или tg 48о = AB/AC

Поскольку значения тангенсов для всех углов уже заранее подсчитаны, то мы просто берем готовое значение.

Получаем: 1,1106 = АВ/300, отсюда: АВ = 1,1106 * 300 = 333 метра.

Таким образом, мы получили расстояние АВ, зная взаимосвязь между острым углом прямоугольного треугольника и его сторонами.

Вопросы

  1. Что изучает тригонометрия?
  2. Где применяется на практике тригонометрия?
  3. Что такое синус, косинус, тангенс и котангенс??

Список использованных источников

  1. Урок на тему “Наглядная геометрия” Самылина Марина Валентиновна., г. Киев.
  2. Уроки геометрии Кирилла и Мефодия. 7 класс (2005).
  3. Геометрия: Рабочая тетрадь для 7 класса общеобразовательных учреждений Дудницын Юрий Павлович.

Над уроком работали

Потурнак С.А.

Самылина Марина Валентиновна.

Поставить вопрос о современном образовании, выразить идею или решить назревшую проблему Вы можете на Образовательном форуме, где на международном уровне собирается образовательный совет свежей мысли и действия.

Создав блог, Вы не только повысите свой статус, как компетентного преподавателя, а и сделаете весомый вклад в развитие школы будущего.

Гильдия Лидеров Образования открывает двери для специалистов  высшего ранга и приглашает к сотрудничеству в направлении создания лучших в мире школ.

Предмети > Математика > Математика 8 класс

Источник: https://edufuture.biz/index.php?title=%D0%97%D0%BD%D0%B0%D1%87%D0%B5%D0%BD%D0%B8%D1%8F_%D1%81%D0%B8%D0%BD%D1%83%D1%81%D0%B0,_%D0%BA%D0%BE%D1%81%D0%B8%D0%BD%D1%83%D1%81%D0%B0_%D0%B8_%D1%82%D0%B0%D0%BD%D0%B3%D0%B5%D0%BD%D1%81%D0%B0_%D0%BD%D0%B5%D0%BA%D0%BE%D1%82%D0%BE%D1%80%D1%8B%D1%85_%D1%83%D0%B3%D0%BB%D0%BE%D0%B2._%D0%9F%D0%BE%D0%BB%D0%BD%D1%8B%D0%B5_%D1%83%D1%80%D0%BE%D0%BA%D0%B8

Юрист и закон
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: